"Enter"a basıp içeriğe geçin

diferansiyel özel ders

Boğaziçi Üniversitesi matematik öğretmenliği  mastır ve doktora yapmış 19 yıllık öğretmenlik ve özel ders deneyimli hocadan özgün ders notu ve teknoloji destekli eğitimle yüzlerce  üniversite ve lise öğrencisine özel ders vermiş hocadan  skype veya zoom üzerinden uygun fiyata üniversite öğrencilerine   birebir veya online olarak diferansiyel denklemler ,

dersleri verilir. Eğer eksikliklerinizi kısa sürede tamamlamak ve matematik dersleri sınavlarında başarılı olmak istiyorsanız işte fırsat, şu an seviyeniz ne olursa olsun mutlaka başarılı olacaksınız. Unutmayın özel dersi işin uzmanından alırsanız hem kısa sürede öğrenir hem de gereksiz yere zaman ve para harcamış olmazsınız.

        Üniversitede okuyan öğrenciler aldıkları dersleri düzenli takip etmekte zorlanır. Ayrıca liseden de çok fazla çalışmadan üniversitede bir bölüme girmiş olabilir, fakat her ne kadar bazı  özel üniversitelerde dersleri geçmek kolay olsa da genelde calculus derslerini iyi bir ortalama ile geçmek çok kolay değil. Özel ders, öğrencilerin iyi bir notla geçmelerini ve takip edemedikleri konuları da kısa sürede öğrenmelerini sağlar. Ders verdiğim öğrenciler bu tür problemleri yaşamadan ve yüksek  notlarla derslerini geçerler.referanslar ……..

………………………………………………………………………………..

  • e-mail : snf1881@gmail.com
  • web: www.ozelgeometri.com
  •  tel: 05423140369
  • Youtube:youtube/@ozelcalculusdersi345
  • Basic Concepts
  • Definitions Some of the common definitions and concepts in a differential equations course
  • First Order Differential Equations
  • Linear Equations Identifying and solving linear first order differential equations.
  • Separable Equations Identifying and solving separable first order differential equations.
  • first order differential equations.
  • Modeling with First Order Differential Equations Using first order differential equations to model physical situations.
  • Exact Equations Identifying and solving exact differential equations.
  • Bernoulli Differential Equations
  • Euler’s Method In this section we’ll take a brief look at a method for approximating solutions to differential equations.
  • Second Order Differential Equations
  • Real Roots Solving differential equations whose characteristic equation has real roots.
  • Complex Roots Solving differential equations whose characteristic equation complex real roots.
  • Repeated Roots Solving differential equations whose characteristic equation has repeated roots.
  • Reduction of Order
  • econd order differential equations, including looks at the Wronskian and fundamental sets of solutions.
  • Nonhomogeneous Differential Equations
  • Undetermined Coefficients The first method for solving nonhomogeneous differential equations that we’ll be looking at in this section.
  • Variation of Parameters Another method for solving nonhomogeneous differential equations.
  • Laplace Transforms
  • The Definition The definition of the Laplace transform.
  • Inverse Laplace Transforms In this section we ask the opposite question. Here’s a Laplace transform, what function did we originally have?
  • Step Functions This is one of the more important functions in the use of Laplace transforms. With the introduction of this function the reason for doing Laplace transforms starts to become apparent.
  • Solving IVP’s with Laplace Transforms
  • Nonconstant Coefficient IVP’s
  • Convolution Integral
  • A brief introduction to the convolution integral and an application for Laplace transforms.
  • Table of Laplace Transforms
  • Systems of Differential Equations
  • determinant of a matrix, linearly independent vectors and systems of equations revisited.
  • Eigenvalues and Eigenvectors Finding the eigenvalues and eigenvectors of a matrix.
  • Systems of Differential Equations
  • Solutions to Systems .
  • Real Eigenvalues Solving systems of differential equations with real eigenvalues.
  • Complex Eigenvalues Solving systems of differential equations with complex eigenvalues.
  • Repeated Eigenvalues Solving systems of differential equations with repeated eigenvalues.
  • Nonhomogeneous Systems Solving nonhomogeneous systems of differential equations using undetermined coefficients and variation of parameters.
  • Laplace Transforms
  • Series Solutions
  • Power Series A brief review of some of the basics of power series.
  • Taylor Series A reminder on how to construct the Taylor series for a function.
  • Series Solutions In this section
  • Euler Equations We will look at solutions to Euler’s differential equation in this section.
  • Higher Order Differential Equations
  • Basic Concepts for nth Order Linear Equations
  • Linear Homogeneous Differential Equations
  • Undetermined Coefficients
  • Variation of Parameters
  • Laplace Transforms In this section
  • Systems of Differential Equations Here we’ll take a quick look at extending the ideas we discussed when solving 2 x 2 systems of differential equations to systems of size 3 x 3.
  • Series Solutions This section serves the same purpose as the Laplace Transform section.
  • Boundary Value Problems & Fourier Series
  • Eigenvalues and Eigenfunctions .
  • Periodic Functions and Orthogonal Functions
  • Fourier Sine Series
  • Fourier Cosine Series
  • Convergence of Fourier Series
  • Partial Differential Equations
  • The Heat Equation
  • The Wave Equation
  • Separation of Variables
  • Solving the Heat Equation
  • Heat Equation with Non-Zero Temperature Boundaries
  • Laplace’s Equation Vibrating String

old exams

240_final_f17.pdf
2017
240a1u98.pdf Summer
1
1998
240a2u98.pdf Summer
2
1998
240a3u98.pdf Summer
3
1998
240afu98.pdf Summer
1998
240b1u98.pdf Summer
1
1998
240b2u98.pdf Summer
2
1998
240b3u98.pdf Summer
3
1998
240bfu98.pdf Summer
1998
240Exam1-Summer2010.pdf Summer
1
2010
240exam1spring2010.pdf Spring
1
2010
240Exam3-Summer 2010.pdf Summer
3
2010
240exam3spring2010.pdf Spring
3
2010
240Exam-2(solutions) Summer 2010.pdf Summer
2
2010
240fau04.pdf Summer
2004
240fbu04.pdf Summer
2004
240FinalExam-Summer 2010.pdf Summer
2010
240finalSpring2010.pdf Spring
2010
240Finalu14.pdf Summer
2014
240fxf00.pdf Fall
2000
240fxf00.tex
2000
240fxf06.pdf Fall
2006
240fxf97.pdf Fall
1997
240fxf97.tex
1997
240fxs01.pdf Spring
2001
240fxs01.tex
2001
240fxs02.pdf Spring
2002
240fxs02.tex
2002
240fxs06-sol.pdf
2006
240fxs07-sol.pdf
2007
240fxs14.pdf Spring
2014
240fxs94.pdf
1994
240fxs97.pdf Spring
1997
240fxs97.tex
1997
240fxs99.tex
1999
240fxsols14.pdf
2014
240fxu05l.pdf Summer
2005
240fxu07.pdf Summer
2007
240fxU13.pdf
2013
240fxu14.pdf Summer
2014
240t1au04.pdf Summer
1
2004
240t1bu04.pdf Summer
1
2004
240t1f00.pdf
1
2000
240t1f00.tex
1
2000
240t1f03-sol.pdf
1
2003
240t1f05.pdf
1
2005
240t1f06.pdf Fall
1
2006
240t1f97.pdf Fall
1
1997
240t1f97.tex
1
1997
240t1s00.doc
1
2000
240t1s01.pdf Spring
1
2001
240t1s01.tex
1
2001
240t1s02.pdf Spring
1
2002
240t1s02.tex
1
2002
240t1s04.pdf Spring
1
2004
240t1s06.pdf
1
2006
240t1s14.pdf Spring
1
2014
240t1s15.pdf Spring
1
2015
240t1s15sol.pdf Spring
1
2015
240t1s94.pdf
1
1994
240t1s97.pdf Spring
1
1997
240t1s97.tex
1
1997
240t1s99.tex
1
1999
240t1sols14.pdf Spring
1
2014
240t1u03.pdf Summer
1
2003
240t1u05.pdf Summer
1
2005
240t1u07.pdf Summer
1
2007
240t1u14.pdf Summer
1
2014
240t2au04.pdf Summer
2
2004
240t2bu04.pdf Summer
2
2004
240t2f00.pdf
2
2000
240t2f00.tex
2
2000
240t2f03-sol.pdf
2
2003
240t2f06.pdf Fall
2
2006
240t2f97.pdf Fall
2
1997
240t2f97.tex
2
1997
240t2s00.doc
2
2000
240t2s01.pdf Spring
2
2001
240t2s01.tex
2
2001
240t2s02.pdf Spring
2
2002
240t2s02.tex
2
2002
240t2s04.pdf Spring
2
2004
240t2s06.pdf Spring
2
2006
240t2s07-sol.pdf
2
2007
240t2s14.pdf Spring
2
2014
240t2s15.pdf Spring
2
2015
240t2s15sol.pdf Spring
2
2015
240t2s94.pdf
2
1994
240t2s97.pdf Spring
2
1997
240t2s97.tex
2
1997
240t2s99.tex
2
1999
240t2sols14.pdf
2
2014
240t2u03.pdf Summer
2
2003
240t2u05.pdf Summer
2
2005
240t2u07.pdf Summer
2
2007
240t2u14.pdf Summer
2
2014
240t3au04.pdf Summer
3
2004
240t3bu04.pdf Summer
3
2004
240t3f00.pdf Fall
3
2000
240t3f00.tex
3
2000
240t3f06.pdf Fall
3
2006
240t3f98.pdf Fall
3
1998
240t3s00.doc
3
2000
240t3s01.pdf Spring
3
2001
240t3s01.tex
3
2001
240t3s02.pdf Spring
3
2002
240t3s02.tex
3
2002
240t3s04.pdf Spring
3
2004
240t3s06.pdf
3
2006
240t3s07-sol.pdf
3
2007
240t3s14.pdf Spring
3
2014
240t3s15.pdf Spring
3
2015
240t3s15sol.pdf Spring
3
2015
240t3s94.pdf
3
1994
240t3s97.pdf Spring
3
1997
240t3s97.tex
3
1997
240t3s99.tex
3
1999
240t3sols14.pdf
3
2014
240t3u03.pdf Summer
3
2003
240t3u05.pdf Summer
3
2005
240t3u07.pdf Summer
3
2007
240t4u01.pdf Summer
4
2001
240test2Spring2010.pdf Spring
2
2010
551t1s01.pdf Fall
1
2001
exam1Fall2008.pdf Fall
1
2008
exam1solutions.pdf
1
exam1sum09.pdf Summer
1
2009
Exam1sum09solutions.pdf
1
2009
exam2Fall2008.pdf Fall
2
2008
exam2solutions.pdf
2
Exam2sum09solutions.pdf
2
2009
Exam3sum09solutions.pdf
3
2009
finalFall2008.pdf Fall
2008
finalSpring2009.pdf Spring
2009
finalSpring2009blank.pdf Spring
2009
Finalsum09solution.pdf
2009
M240Fall09T1Ans.pdf Fall
1
2009
M240Fall09T2Ans.pdf Fall
2
2009
M240Fall09T3Ans.pdf Fall
3
2009
m240ff10soln.pdf
2010
m240fsoln-s11.pdf
2011
m240x1-s11soln.pdf
1
2011
m240x1f10soln.pdf
1
2010
m240x1f14.pdf
1
2014
m240x1solnf14.pdf
1
2014
m240x2-s11soln.pdf
2
2011
m240x2f10soln.pdf
2
2010
m240x2f14.pdf Fall
2
2014
m240x2f14soln.pdf
2
2014
m240x3f10soln.pdf Fall
3
2010
m240x3f14.pdf Fall
3
2014
m240x3f14soln.pdf Fall
3
2014
m240x3soln-s11.pdf
3
2011
math240-exam1(2008summer).pdf Summer
1
2008
math240-exam2(summer 2008).pdf Summer
2
2008
math240-exam2.pdf Summer
2
math240-exam3(2008summer).pdf Summer
3
2008
math240-exam3.pdf Summer
3
Math240fxS17.pdf
2017
Math 240-Final(2008summer).pdf Fall
2008
Math 240Exam1U15.pdf Summer
1
2015
Math 240Exam2U15.pdf Summer
2
2015
Math 240FinalU15.pdf
2015
Midterm1_Math240u14.pdf Summer
1
2014
Midterm2_Math240u14.pdf Summer
2
2014
test1Fall2008blank.pdf Fall
1
2008
test1Spring2007blank.pdf Spring
1
2007
test1Spring2009.pdf Spring
1
2009
test2Fall2008blank.pdf Fall
2
2008
test2Spring2009.pdf Spring
2
2009
test2Spring2009blank.pdf Spring
2
2009
test3Fall2008.pdf Fall
3
2008
test3Fall2008blank.pdf Fall
3
2008
test3Spring2009.pdf Spring
3
2009
test3Spring2009blank.pdf Spring
3
2009